Estimates on the Prediction Horizon Length in Model Predictive Control∗
نویسنده
چکیده
We are concerned with model predictive control without stabilizing terminal constraints or costs. Here, our goal is to determine a prediction horizon length for which stability or a desired degree of suboptimality is guaranteed. To be more precise, we extend the methodology introduced in [7] in order to improve the resulting performance bounds. Furthermore, we carry out a comparison with other techniques designed for deriving estimates on the required prediction horizon length.
منابع مشابه
Computationally Efficient Long Horizon Model Predictive Direct Current Control of DFIG Wind Turbines
Model predictive control (MPC) based methods are gaining more and more attention in power converters and electrical drives. Nevertheless, high computational burden of MPC is an obstacle for its application, especially when the prediction horizon increases extends. At the same time, increasing the prediction horizon leads to a superior response. In this paper, a long horizon MPC is proposed to c...
متن کاملImproved Optimization Process for Nonlinear Model Predictive Control of PMSM
Model-based predictive control (MPC) is one of the most efficient techniques that is widely used in industrial applications. In such controllers, increasing the prediction horizon results in better selection of the optimal control signal sequence. On the other hand, increasing the prediction horizon increase the computational time of the optimization process which make it impossible to be imple...
متن کاملStability and performance guarantees for model predictive control algorithms without terminal constraints
A typical bottleneck of model predictive control algorithms is the computational burden in order to compute the receding horizon feedback law which is predominantly determined by the length of the prediction horizon. Based on a relaxed Lyapunov inequality we present techniques which allow us to show stability and suboptimality estimates for a reduced prediction horizon. In particular, the known...
متن کاملAdaptive Simplified Model Predictive Control with Tuning Considerations
Model predictive controller is widely used in industrial plants. Uncertainty is one of the critical issues in real systems. In this paper, the direct adaptive Simplified Model Predictive Control (SMPC) is proposed for unknown or time varying plants with uncertainties. By estimating the plant step response in each sample, the controller is designed and the controller coefficients are directly ca...
متن کاملAnalysis of Applying Event-triggered Strategy on the Model Predictive Control
In this paper, the event-triggered strategy in the case of finite-horizon model predictive control (MPC) is studied and its advantages over the input to state stability (ISS) Lyapunov based triggering rule is discussed. In the MPC triggering rule, all the state trajectories in the receding horizon are considered to obtain the triggering rule. Clearly, the finite horizon MPC is sub-optimal with ...
متن کامل